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Instabilities and resistance fluctuations in thin accelerated superconducting rings
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The nonequilibrium properties of a driven quasi-one-dimensional superconducting ring subjected to a con-
stant electromotive force~emf! is studied. The emf accelerates the superconducting electrons until the critical
current is reached and a dissipative phase slip occurs that lowers the current. The phase-slip phenomena is
examined as a function of the strength of the emf, thermal noise, and normal state resistivity. Numerical and
analytic methods are used to make detailed predictions for the magnitude of phase slips and subsequent
dissipation.
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I. INTRODUCTION

When driven away from equilibrium, many systems e
counter instabilities leading to additional states or phas
Often there exists a multiplicity of possible states that can
selected near the onset of the instability. The selected s
may depend on various factors such as the rate at which
system is driven through the instability, noise, internal ex
tations, different dissipation mechanisms, and the sys
size.

In this paper the selection of states is studied in driv
superconducting rings. Many of the phenomena obser
here are not limited to superconducting rings, but appea
many other physical systems ranging from pattern form
systems@1–5# to lasers@6#. The relative simplicity of the
superconducting system makes it possible to obtain infor
tion about some of the general questions in driven nonlin
systems such as state selection and the effect of dissip
on the state selection process itself.

The mesoscopic nature of the system, i.e., the super
ducting ring having a finite circumference with a finite num
ber of accessible states, is fundamental to this problem. F
it leads to the existence of a finite number of metasta
current-carrying states which can compete for occupation
is this competition that lies at the heart of the problem. S
ond, care must be taken to distinguish between volta
driven and current-driven systems. As shown by Tarlieet al.
@7#, for systems that are not in the thermodynamic limit, i.
mesoscopic systems, the choice of ensemble is not free
this paper we focus on voltage-driven systems as oppose
current-driven systems.

In addition to providing a prototype system to study va
ous aspects involving driven systems, in general, nonequ
rium superconductivity is of great interest in its own righ
Indeed, the current-induced transitions in superconduc
filaments have been a subject of intense experimental
theoretical study for almost three decades. Reference@8# pro-
vides a comprehensive review of the field.

We concentrate on the emergence of the dissipative ph
slip state @9–13# in voltage-driven mesoscopic system
1063-651X/2002/66~2!/026115~9!/$20.00 66 0261
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When a superconductor~below Tc) is driven by a voltage
source, the supercurrent increases until it reaches a cri
value, at which point the system becomes unstable. Sev
interesting phenomena may then occur: the system will e
the dissipative phase-slip state, Joule heating can take p
mode locking, as well as other phenomena. Here, the focu
on the onset of the instability and its effect on the dynam
of the superconducting state.

The transitions between the current-carrying states
take place via two fundamentally different routes:~i! by a
nucleation process involving thermal fluctuations and an
tivation energy barrier, or~ii ! the system may be driven to a
instability by an external driving force. In the context o
nucleation and metastability, the decay of persistent curre
in thin superconductors is an old and extensively stud
problem@14–17#. However, the latter@13# involves a decay
from a point of instability, and is relatively poorly unde
stood. One of the major difficulties is this: whereas in t
case of nucleation the decay is from a metastable state
volving thermal activation and a saddle point, in the lat
case the external force drives the system to a point of in
bility where there is no energy barrier left, i.e., the ener
landscape looks locally flat. In this instance the decay a
the final state depend on various factors, such as how fas
system was driven, the relative strength of fluctuations,
ternal excitations, and so on. This makes a precise theore
formulation of the problem difficult, since it is not possib
to use the free energy formulation as in the case of meta
bility @18#.

II. THE SYSTEM

The physical system considered is a quasi-o
dimensional superconducting ring of finite circumferenc
i.e., the radius of the cross-section areaS of the supercon-
ducting filament is much smaller than the coherence lengj
and magnetic penetration lengthl: AS!j(T) and AS
!l(T), respectively, see Fig. 1~a!. When the ring is placed
in a time-dependent magnetic field, by Faraday’s law of
duction, an electromotive force~emf! is induced in the ring.
©2002 The American Physical Society15-1
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From London’s equation„EW (rW)5] t@(4pl2/c2)JW s(rW,t)#… this
leads to a current that increases in time.~HereEW is the elec-
tric field, JW s the supercurrent density, andc the speed of
light.! The time-dependent increase in the current can
continue indefinitely, and eventually the current will reach
critical value, at which point the system becomes unsta
and a dissipative phase slip will occur, resulting in a red
tion of the current@13# by a discrete amount.

It is important to reemphasize that the system dynamic
the case under study here, viz., the decay of the system
a point of instability, is very different from the historically
well-studied problem of the decay of the system from a po
of metastability. The picture of the system hopping from on
local minimum to the next no longer applies. Rather,
picture now is one where the system is initially in a loca
stable state, but as a consequence of the voltage source
energy landscape evolves in such a way that as the cri
current is reached, the system finds itself at the top of a
When this situation is encountered, it is possible that th
exist a variety of different valleys for the system to flow int
each valley leading to a locally stable state. In this pictu
each of these locally stable states compete for occupatio

To examine this phenomena the Ginzburg-Landau~GL!
theory of dirty superconductors will be considered. T
Ginzburg-Landau free energy functional can be written a

F@C,AW #5E dxW H \2

2me
US ¹W 2 i

2e

\c
AW DCU2

1auCu21
b

2
uCu4J

1~8p!21E dxW~¹W 3AW !2, ~1!

where AW is the vector potential,C is the complex valued
order parameter,e is the electron charge,me is the electron
mass,c is the speed of light,\ is Planck’s constant, anda
and b are the expansion coefficients. Since the curren
induced in the loop by a time varying magnetic flux, t
effect of the induced emf must be included in the GL d
scription. By Faraday’s law of induction, the electrons in t
loop are subjected to an emf

FIG. 1. ~a! Illustration of a voltage-driven superconducting rin
The magnetic flux is due to an infinitely long solenoid pass
through the center of the loop.~b! Illustration of the current-
carrying states as uniformly twisted plane waves. At a phase
the amplitude of the helix approaches locally zero. The line thro
the center of the helix represents the superconducting wire.
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E52
dF~ t !

dt
5 R EW •d lW, ~2!

where E is the induced emf andF(t) is magnetic flux
through the loop. The magnetic flux and the magnetic fi
are related by

F5E
area

BW •dSW l , ~3!

whereSW l is the area of the loop. Equations~2! and~3! can be
combined to obtain a relationship between the the vec
potential and the electric field, i.e., ifEx is used to denote the
tangential component of the field, thenAx52Exct, where
Ax is the tangential component of the vector potential. T
in turn givesAx52Ect/L, whereL is the length of the wire.

The one-dimensional nature of the problem allows seve
simplifications. First, since the wire is narrow the magne
field generated by the supercurrent does not significantly
fluence the order parameter. This allows one to treat the v
tor potentialAx as a parameter instead of as a dynami
variable. In addition, since the magnetic field energy due
the supercurrent is much smaller than the energy assoc
with the order parameter, the magnetic field term can
dropped from the free energy@15#. Finally, since the radius
of the wire is less thanj the order parameter is only a func
tion of the tangential direction (x). The geometry of the wire
implies periodic boundary conditions, i.e.,C(x)5C(x1L).

For further analysis and computational efficiency it
convenient to rewrite the equation in a dimensionless fo
using the following transformations:

C8[~b/uau!1/2C,

x8[x/j,

A8[2ejA/\c,

vec8 [vec2etGL /\, ~4!

wherej25\2/(2meuau) and it is implicitly assumed that the
temperature is below the superconducting transition~i.e., a
,0). tGL is the Ginzburg-Landau time defined as

tGL5
p\

8kB~Tc2T!
, ~5!

and it is the natural measure for time, i.e.,t→t/tGL . In the
following, we will work in dimensionless units, i.e., we pe
form the transformations as defined above and drop out
primes for convenience.

The last transformation in Eq.~4! involvesvec , the elec-
trochemical potential generated by the normal current, wh
will be formally introduced in the following section, wher
the GL theory is extended to include normal~Ohmic! current
generation. In addition, following the scalings in Eqs.~4!, it
is natural to measure the length in units of the cohere
length asl 5L/j. Then the rescaled boundary condition rea
C(x)5C(x1 l ), and the dimensionless free energy becom

p,
h

5-2
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F5E
2 l /2

l /2

dxH u~]x2 iAx!Cu22uCu21
1

2
uCu4J . ~6!

To describe the dynamics of the superconducting cond
sate, relaxational dynamics are assumed, leading to the
dard stochastic time-dependent Ginzburg-Landau~STDGL!
equation of motion, i.e.,

]C

]t
52

dF
dC*

1h, ~7!

whereh[h(x,t) is an uncorrelated Gaussian noise sou
with correlations

^h~x,t !&50,

^h* ~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!.

The angular brackets denote an average, andD is the inten-
sity of the noise determined by the fluctuation-dissipat
@17# theorem as

D5
2pkBT

SHc
2j

, ~8!

where Hc is the critical field, andHc
2}(12t)2, j(T)}(1

2t)21/2, andt5T/Tc @28#.
To make the model numerically more tractable, it is co

venient to make the transformation@17,19# C→Ceiq(t)x,
where

q~ t !5Ax5v l 21t, ~9!

wherev5tGL2eE/\. This transformation twists, or winds
the order parameter along the wire. The effect of the tra
formation is to map the current-carrying states to twis
plane waves as illustrated in Fig. 1~b!. After the transforma-
tion, the periodic boundary condition becomes

C~ l 1x,t !5C~x,t !eiq(t) l , ~10!

and the equation of motion obtained from Eq.~7! reads as

]C

]t
5

]2C

]x2
1C2CuCu21 i l 21vxC1h. ~11!

This formulation neglects the electrochemical potential d
to normal current generation at a phase-slip center. Its in
sion is discussed next.

A. Electrochemical potential

Equation~11! would be a sufficient description if the gen
eration of a normal current at a phase slip could be neglec
This approximation is valid when the normal state resistiv
is negligible@13,17#. However, the Ginzburg-Landau free e
ergy is only valid for ‘‘dirty’’ superconductors in which the
normal state resistivity is appreciable even at low tempe
tures. One aim of the current study is to examine the effec
the resistive normal current to the process. To facilitate
02611
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goal, the equation of motion@i.e., Eq.~11!# must be general-
ized to include the creation of electrochemical potential g
dients at phase-slip locations.

A phase slip occurs when the system locally loses sup
conductivity and becomes a normal Ohmic conductor.
discussed above, belowTc the system retains the fully supe
conducting state after making a transition to a state of low
current. An important question is the effect of the generat
of normal current on the dynamics and the state selec
problem.

To account for the generation of normal current, the tim
derivative in the STDGL equation of motion must be r
placed by]/]t1 ivec , where vec[vec(x,t) is the electro-
chemical potential generated by the normal current@17,20–
23#. With that substitution, the dimensionless equation
motion becomes

S ]

]t
1 ivecDC5]x

2C1C2CuCu21 i
vx

l
C1h. ~12!

Physically, the appearance of the electrochemical po
tial is due to local charge imbalance in a superconduc
Gorkov @24# was the first to point out that in a superco
ductor, the Fermi level, and thus the electrochemical pot
tial, is a local time-dependent variable related to the coh
ence of the superconducting state. Qualitatively, if the lo
charge balance is disturbed, the Fermi level experience
local time-dependent perturbation. This in turn affects
local energy gap. Gorkov showed that gauge invarianc
preserved, if the order parameter depends on time as
(22imFt/\), wheremF is the Fermi energy. This leads to th
second term on the left-hand side in Eq.~12!.

The electrochemical potential can be determined by co
bining charge conservation and Ohm’s law in the followi
manner. Charge conservation implies that]x(Jn1Js)50,
where Jn is the normal current andJs is the supercurren
@25#. From Ohm’s law, i.e.,]xvec52aJn , this can be writ-
ten as

]2vec

]x2
5a

]Js

]x
, ~13!

where a is a dimensionless Ohmic resistivity and can
written as

a5rn /ro , ~14!

wherern is the normal state resistivity,

ro5
kBTc~12t !\

pj~T!2e2Hc~T!2
, ~15!

t5T/Tc, andHc(T) is the critical field. For a dirty supercon
ductor @28# this can be written as

ro50.1455
\mokBTc

jol Fe2Hc
2~0!

~16!

wherel F is the mean free path length.
5-3
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III. LINEAR STABILITY ANALYSIS

The aim of the linear stability analysis is to gain insig
into the stability of the current-carrying state against sm
perturbations, how the perturbations grow or decay in tim
and how different modes are selected. In general, when
total current exceeds the critical supercurrent, an Eckh
instability occurs. The Eckhaus instability is a longitudin
secondary instability that appears in many systems exhibi
spatially periodic patterns@26,27#.

To study the Eckhaus instability in superconducting rin
the order parameter is linearized around a current-carry
state by setting C(x,t)5C01dC(x,t), where C0

5A12q2eiqx and q5(v/ l )t. C0 is a current-carrying~or
uniformly twisted plane wave! state that is a solution of Eq
~12! in the limit v/ l !(12qc

2)2/qc'0.77, whereqc51/A3.
This limit is satisfied for the range ofv/ l ’s considered in this
paper~i.e., 231026,v/ l ,231023). Since the system pos
sesses translational invariance and admits plane wave
tions, the perturbation is given in terms of its Fourier expa
sion, i.e.,

dC~x,t !5(
n

@akn
~ t !eiknx1a2kn

~ t !e2 iknx#eiqx,

where akn
(t) is the amplitude of moden associated with

wave vectorkn52pn/ l . Substituting into Eq.~12!, using
Eqs. ~9! and ~13! to solve for vec , and linearizing indC
gives an equation of motion fordC or in Fourier space for
akn

. Settingakn
(t)5akn

el(q,a)t leads to an eigenvalue equ
tion which can be solved to give

ln
6~q,a!52~12q2!~11a/2!2kn

26@~12q2!2~12a

1a2/4!14q2$kn
21a~12q2!%#1/2. ~17!

When ln
6 is negative the corresponding mode is stab

fluctuations decay back to zero, and the superconduc
state persists. Whenln

6 is positive, the current-carrying
states are unstable with respect to fluctuations of a fi
wave vectorkn . For the following discussion,ln

2 can be
neglected as it is negative definite.

In Fig. 2, l1 is shown for the first three modes as
function ofq for several different values ofa. For smallq all
the modes are stable, i.e.,ln

1,0. The inset in Fig. 2~a!
shows that the modes become unstable sequentially; the
est mode first, then the moden52, and so on. The timetn at
which a given mode becomes linearly unstable is determi
by the conditionln(tn)50, which gives

tn15
l

v
A1/31kn

2/6. ~18!

For a wire of infinite length this time corresponds to the tim
at which the current reaches the critical value, i.e.,qn

5(w/ l )tn15A1/31kn
2/6→A1/3 andJc5qc(12qc

2)52/A27.
While Eq. ~18! implies that single phase-slip~i.e., n51)
processes will dominate, this effect is offset by the rate
increase ofln

1 , i.e., ]ln
1/]q is an increasing function ofn.

This can be seen in the small-a limit, i.e.,
02611
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1

]q
U

qn

5
2A1216kn

2

415kn
2 S 3kn

21
~kn

212!~42kn
2!

415kn
2

a

1O~a2!1••• D , ~19!

or for simplicity in the small-kn limit,

]ln
1

]q
U

qn

5A3 ~3kn
212a1••• !. ~20!

Thus the rate of increase of the positive eigenvalue increa
with n. The situation is somewhat analogous to the clas
tortoise/hare race if only two modes are considered~say n
51 and 2). In this case the tortoise (n51) begins the race
first since t1,t2, but the hare accelerates faster sin
]l1

1/]quq1
,]l2

1/]quq2
. To first order ina, the effect of dis-

sipation is to increase the rate of acceleration of both
tortoise and hare equally. Since the tortoise begins the
first this tends to favor the tortoise winning the race. In ter
of mode analysis, increasing the dissipation~i.e., a) in-
creases the probability of a single phase slip (n51) occur-
ring over a double phase slip (n52).

The linear predictions can be used to estimate the rela
probabilities of a phase slip of ordern occurring. In the linear
prediction the equal time correlation function for thenth
mode is

^uan~ t !u2&5
2D

l
e2s(t,a)E

0

t

dt8e22s(t8,a), ~21!

where

FIG. 2. The eigenvalues as a functionq(t)5vt/ l for different
a ’s. The solid line is then51 mode, dotted linen52 mode, and
dashed linen53 mode. For smallq all the modes are stable, i.e
ln

1,0, independent of the value ofa. Increasing the dissipationa
increases the growth rate of all phase-slip modes. The inset in~a!
shows the boxed area.
5-4
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s~ t,a![E
0

t

dt8ln
1~ t8,a!. ~22!

Following the instability, Eq.~21! describes the evolution o
thenth mode from the initial current-carrying state describ
by Cn

i 5A12q2exp(iqx) to the new current-carrying stat

described by Cn5ānexp@ i (q2kn)x#, where ān

5A12(q2kn)2. The quantity

ân[A^uan~ t !u2&/ān ~23!

describes the ‘‘distance’’ from the initial to the finalnth state
and can be thought of as an orthogonal coordinate in
n-dimensional space. The unit of measure in this spac
then

d5(
n

ân
2 . ~24!

If it is assumed that a phase slip has occurred whend51,
then it is natural to interpret the relative probability of annth
order phase slip as

Pn5
ân

2

(
n

ân
2

. ~25!

Equation~25! provides a qualitative picture of the state s
lection process and makes it possible to compare the lin
theory to numerical results. This will be done in Sec. IV~in
particular, see Fig. 9!.

In addition to the dependence ofPn on ln
1 , Pn also

depends on the noise strength. While this is not directly v
ible from Eq. ~25! it should be noted that the equationd
51 imposes aD dependence onân andPn .

Physically, the noise strength depends on the tempera
of the system via the fluctuation-dissipation theorem. T
intensity of thermal noise increases asT→Tc as demon-
strated by Eq.~8!. Thus, close toTc the relative importance
of the noise becomes increasingly important, whereas a
for Tc the driving force is dominant. Sincea has no time
dependence, the expansion of*0

t dt1ln
1(t1 ,a) leads to the

same result as obtained by Tarlie and Elder@13#, i.e., in terms
of the intrinsic and extrinsic parameters, the instability
ordern becomes active at timetn5 l (]qln

1v l )21/2.
To summarize, the linear analysis shows that the s

selection has a subtle dependence on both the applied dr
force and on the intrinsic properties of the system. It is i
portant to note that this analysis can only be expected to
a qualitative description of the process since the anal
does not account for competition between the various mo
These results will be compared with numerical simulatio
of the stochastic time-dependent GL equation in Sec. IV.

IV. NUMERICAL RESULTS

The parameters that enter the numerical simulations
be estimated by considering typical experimental valu
02611
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such asTc53 K, T50.93Tc , Hc5300 G, andj(0)5AS
51000 Å. With these values the intensity of the noise
D51023, the GL time is tGL51.4310211 and v
'E/23 mV. In the simulations the temperature is fixed a
thus the intensity of noise is fixed.v was varied between
0.0001 and 0.1. This corresponds to electromotive for
from 2 nV to 2 mV. For dirty superconductors the norma
state resistivity can vary between 0.01 and 1.0mV cm and
ro varies from 1.0 to 100.0mV cm. Using these values th
dimensionless resistivity,a'1024–1.0, depending on the di
mensions and the material.

A simple Euler algorithm was used for the time integr
tion of Eq. ~12!, and Eq.~13! was solved in Fourier space
The complex order parameter was separated into its real
imaginary parts. The simulation parameters wereL
564, dx50.85, dt50.2, wheredx anddt are the small-
est discrete elements of space and time, respectively.

A useful parametrization of the length of the system
nl[ lqc/2p, whereqc51/A3 from the Eckhaus analysis o
the GL equation as discussed above.nl is interpreted as the
winding number of the order parameter when the Eckh
instability is encountered. For the simulations to follow,nl
55 ~see Fig. 3!. This allows enough complexity due to in
teraction between different modes, i.e., five modes can c
pete for occupation, while remaining numerically tractab

FIG. 3. A snapshot of a phase-slip process withL564 andnl

55. ~a! The current-carrying states are uniformly twisted pla
waves.~b! Due to fluctuations, the supercurrent at some locat
along the wire grows slightly faster than in the rest of the syste
~c! At a phase slip the system makes a transition back to below
critical current by reducing the number of loops in the helix.~d!
After the phase slip, the system retains the perfectly supercond
ing state withJ,Jc everywhere.z axis, length,x-y plane, Re@C#
and Im@C#.
5-5
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When computing the probability of annth-order phase slip
Pn , the averaging was typically from 2000 phase-slip eve
~small v! up to 15 000 phase slips~large v). Simulations
performed at large values ofa andv ~not shown here! often
lead to unusual results, which may be due to numerical
accuracies.

A. Dynamics of the order parameter

The dynamics of the order parameter around a phase
is illustrated in Figs. 3 and 4. Figure 3 illustrates that
current-carrying state is a uniformly twisted plane wave.
the current increases, the helix becomes more tightly wou
Due to fluctuations, there will be weak spots where the lo
supercurrent reaches the critical current before the rest o
system. This is the point where the amplitude of the or
parameter starts to decay rapidly toward zero. WhenuCu2

→0, the phase-slip center momentarily disconnects
phases to the left and right of it, the helix looses a loop, a
the supercurrent jumps to a lower value. This cycle is
peated periodically.

In Figs. 3 and 4 the behavior described using linear an
sis in the preceding section is clearly visible: as the sup
current increases, the absolute value of the order param
uCu2, decreases and, at the moment of the phase slip,
proaches zero. After the phase slip the order parameter
idly recovers. Figure 4 demonstrates this behavior. This
lows the amplitude to relax toward equilibrium in th
vicinity of the phase-slip center@times t2 and t3 in Figs. 4
and 3~c! and 3~d!, respectively#. After a short time the wire
obtains a uniform current (t4 in Fig. 4!.

To quantify the phase-slip events it is useful to consi
two quantities: the spatially averaged supercurrent and
winding number, both at timet. The spatially averaged su
percurrent is given by

Js~ t !5
1

2l E0

l

Js~C!dx. ~26!

The winding number is a measure of the total phase cha
in the system and can be defined as

FIG. 4. Order parameter just before and after the phase slip
uCu→0, the phase gradient must grow in order to maintain a c
stant current. As the amplitude goes to zero, it can ‘‘slip’’ by
multiple of 2p and relax to a state of lower current.
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W~ t !5
1

2pE0

l

dx
]@arg~C~x,t !!#

]x
. ~27!

As described above, the order parameter can change
winding number by 2pn, where n561,62, . . . . Only
changes by an integral multiple of 2p are possible in order
to preserve the continuity of the order parameter. This a
implies that at a single~multiple! phase slip, the system re
moves exactly one~integral multiple! fluxoid.

Figure 5 displays the time development of the superc
rent and winding number defined in Eqs.~26! and ~27!, re-
spectively. The electric field drives the current to the critic
current, where an instability occurs and the current jumps
a lower value. As suggested by Fig. 5, there can be sev
modes simultaneously present. In the figure, phase slip
order two dominate but occasionally there are jumps of or
three. The relative occurrence of phase slips of all order
shown in Fig. 6 as a function of driving force~i.e., v) for
several values ofa.

As discussed in connection with the linear stability ana
sis the appearance of phase slips of different orders
subtle issue. For example, every now and then the wind
number displays little dips, as if the total phase slip wa
result of a two-stage process. It is instructive to look at
state selection probabilities in Fig. 6 together with the d
namics of the supercurrent and the winding number in Fig
As seen from Fig. 6 phase slips of ordern51 dominate the
process at low driving forces. As the driving force is i
creased phase slips of ordern52 become dominant and th
shape of the probability curve becomes skewed. Order
order, other modes become dominant in a similar man
This is consistent with the linear stability analysis as sho
in Fig. 2.

The little dips referred to above are a result of competit
between the modes. As seen in the linear stability analy
modes of lower order become unstable first but the high

s
-

FIG. 5. Supercurrent and winding number as a function of tim
When this figure is compared to the state selection probabilitie
Fig. 6, it can be seen that the probabilities of double and tri
phase slips are almost equal, but there is still a small probability
single slips.
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order ones grow at a faster rate. This leads to competi
and crossover effects. This implies that the dips in Fig. 5
not due to a result of a two-stage process, where a phase
of higher order occurs via two lower-order processes,
instead due to thecoexistenceof different modes with differ-
ent growth rates. Figure 7 illustrates the complicated na
of the phase slip when several modes are simultaneo
present. There is a competition between different modes,
it is even possible for several phase-slip centers to exist~al-
most! simultaneously.

Figure 8 shows the time rate of change ofuCu2 and the
electrochemical potential at the phase-slip center as a f
tion of time, when the moden51 is dominant. The time
frame is selected in such a way that the figures cover
immediate vicinity of the phase slip. At the moment of t
phase slip,uCu250. After the phase slip,C rapidly recovers
its equilibrium value. Since there is a constant emf acting
the superconductor,uCu starts to decrease after its recove
As seen in the lower figure,vec regains its equilibrium value
(vec50) at the phase-slip center considerably slower th
C. This can be seen in the following way. The electroche
cal potential is zero if the current is uniform throughout t
sample. However, as seen in Figs. 4 and 7, the time requ
to reach a uniform current is much longer than the time
quired for healing of the order parameter at the phase-
center. Physically, this corresponds to relaxation of
charge imbalance@28# in a superconductor. The relaxation
diffusive @8,10,29#, with time scales typically of order 1029

–10210 s.
As discussed in the preceding section the electrochem

potential, or dissipation, changes the probability of mak
an nth order phase slip. This can be seen in Fig. 6 for

FIG. 6. State selection probabilities from numerical simulatio
as a function of the driving force. The closed circles denote sin
phase slips, open circles, double; closed squares, triple; o
squares, quadruple; and closed triangles, phase slips of order
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values ofv. To highlight this feature the selection probabi
ties were numerically estimated as a function ofa for v
51023 and are displayed in Fig. 9. In this figure the line
prediction@i.e., Eqs.~21!–~25!# is also included for compari-
son. While the linear analysis fails to predict the correct a
plitudes for different modes, it provides the correct quali
tive picture and predicts the order in which different mod
become dominant. The quantitative discrepancies stem f

s
le
en
e.

FIG. 7. Top: The winding number as a function of time. Bottom
The square of the amplitude of the order parameter taken at
different times inside the boxed area. As the winding numbers
creases, there are spots where the amplitude starts to decayt0).
This leads to competition and coexistence of several modes,
several possible phase-slip centers. The parameters correspo
the case when three modes,n51,2,3, are present.

FIG. 8. Top: The time derivative ofuCu2 at the location of the
phase slip as a function of time. Bottom: The rate of change of
electrochemical potential at the phase-slip center as a functio
time. The simulation parameters correspond to a case when s
slips dominate almost completely. The slice runs from immediat
before the phase slip to just after it.
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two factors, first the nonlinear terms seem to favor a sep
tion between the modes. Figure 6 shows that once a m
becomes dominant, it quickly suppresses all the other o
However, in linear theory all the allowable modes have mu
higher amplitudes at all values of the driving forcev @30#.
Second, at the limita→0 the linear theory predicts accu
rately the crossover points where a new mode beco
dominant@30#, but the presence of dissipation~finite a) has
a significant effect on it as can be seen in Figs. 6 and 9.

B. Power dissipated at a phase slip

A phase slip is a dissipative process where electrical
ergy is locally converted into heat. This is due to Ohm
resistance at the phase-slip center. Early experiments@10,29#
showed that the differential resistance related to the ph
slip is temperature independent for a wide range of temp
tures except very close toTc . This is a delicate issue; heatin
due to Ohmic resistance changes the local critical curr
and issues related to charge imbalance and relaxation
become important@8#. In the following, the heat generated
a phase slip is estimated. The normal carriers are assum
follow Ohm’s law.

The Joule heating law can be used to estimate the
generated at a phase slip. The power generated is

P5E
volume

jWn•EW dV5SE j nExdx, ~28!

wheredV is a volume element,S is the cross-sectional are
of the ring, jWn is the dimensional normal current density, a
Ex is the electric field along the wire. In terms of the ele
trochemical potential, the energy per unit volume can then
written as

E

V
5EoE

0

tF E
0

l

uJWnu2dxGdt8, ~29!

FIG. 9. State selection probabilities as a function of the diss
tion ~i.e., a) for v51023.
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where Eo5(2Hc
2/ l )a and JWn is the dimensionless norma

current density.
The increase in temperature due to a phase slip can

estimated using the heat capacity. The heat capacity per
mass is

c5
1

m

DE

DT
,

where c is the specific heat. The change in temperature
then

DT5T0E
0

tF E
0

l

Jn
2dxGdt8, ~30!

where

T05
2Hc

2

lcrm
a,

rm is the mass density, andHc
2}(12t)2, where t5T/Tc

@28#. Equation~30! can be used to estimate the change
temperature due to a phase slip. The linear dependence oT0
on (12t)2 expresses the well-known fact@10,29# that close
to Tc the effects of Joule heating are less significant. Eva
ation of DT requires information about the time and th
length scales involvingvec , and therefore we have not est
mated it here. Figure 10 shows the accumulated energy
power dissipated as a function of time.

V. CONCLUSION

Here, the dynamics of accelerated quasi-one-dimensio
superconductors under the influence of a voltage source

-
FIG. 10. Top: Energy~in arbitrary units! dissipated as a function

of time. Bottom: The corresponding power~in arbitrary units! dis-
sipated at phase slips. The figures show clearly the quantized n
of dissipation. The crossover effects are visible in the width
peaks. The simulation parameters weredx50.85, dt50.2, a
50.01, v50.0064, andD51023. These parameters correspond
a case when three modes (n51,2,3) are active at the same time.
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studied. A constant emf was used to accelerate the supe
rent to the critical current, at which point the Eckhaus ins
bility is encountered and multiple metastable states can c
pete for occupation. Each of these competing metast
states corresponds to a state with a different supercur
The transition to a new state of lower current involves g
eration of a resistive phase-slip center that heals after
phase slip. Because the system was driven by a vol
source, it allowed the study of a very general phenomen
namely, the relation to the general methods and problem
nonlinear dynamics, statistical mechanics, and pattern for
tion.

Linear stability analysis was used to investigate the E
haus instability. It was found out that within the linear a
proximation, the state selection process is a competition
two factors: the characteristic time at which a modean(t)
becomes unstable, and the growth rates of the other mo
For small driving forces, the low-order modes have time
grow and dominate the process, whereas for larger driv
forces the faster growth rates of high-order modes lead
their dominance. In the intermediate region the competit
leads to crossover.

Numerical simulations were performed by simulating t
stochastic time-dependent Ginzburg-Landau equation. It
found out that the behavior is consistent with the predictio
of the linear analysis. Although the behavior was quali
ge

,

,

ev

in

B

p
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tively similar, nonlinearities and interaction between t
phase slips at higher driving forces and higher normal c
rent resistivity lead to differences.

In spite of the simplicity of the system, it displays ric
and complex phenomena, and more analytical and nume
studies are needed. To the authors’ knowledge, there e
no systematic method to study state selection in acceler
systems. Recent work@18,30#, suggests that the path integr
method of Onsager and Machlup@31# may offer a framework
for a systematic study of the decay of systems from points
instability when multiple modes compete for occupation. T
extension of this work to problems where the dynamical s
tem is evolving in time, as is the case here, has not b
explored. Additionally, future work could explore the two
dimensional case numerically.
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