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The nonequilibrium properties of a driven quasi-one-dimensional superconducting ring subjected to a con-
stant electromotive forceem) is studied. The emf accelerates the superconducting electrons until the critical
current is reached and a dissipative phase slip occurs that lowers the current. The phase-slip phenomena is
examined as a function of the strength of the emf, thermal noise, and normal state resistivity. Numerical and
analytic methods are used to make detailed predictions for the magnitude of phase slips and subsequent

dissipation.
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[. INTRODUCTION When a superconductdbelow T.) is driven by a voltage

source, the supercurrent increases until it reaches a critical

When driven away from equilibrium, many systems en-value, at which point the system becomes unstable. Several
counter instabilities leading to additional states or phasednteresting phenomena may then occur: the system will enter
Often there exists a multiplicity of possible states that can béhe dissipative phase-slip state, Joule heating can take place,
selected near the onset of the instability. The selected stafgode locking, as well as other phenomena. Here, the focus is
may depend on various factors such as the rate at which tH the onset of the instability and its effect on the dynamics
system is driven through the instability, noise, internal exci-Of the superconducting state. _
tations, different dissipation mechanisms, and the system The transitions between the current-carrying states can
size. take place via two fundamentally different routés: by a

In this paper the selection of states is studied in driverlucleation process involving thermal fluctuations and an ac-
superconducting rings. Many of the phenomena observeHvation energy barrier, ofii) the system may be driven to an
here are not limited to superconducting rings, but appear ifnstability by an external driving force. In the context of
many other physical systems ranging from pattern formindquclgatmn and metastabll]ty, the decay of persistent currents
systems[1-5] to lasers[6]. The relative simplicity of the N thin superconductors is an old and.extenswely studied
superconducting system makes it possible to obtain informaroblem[14—17. However, the lattef13] involves a decay
tion about some of the general questions in driven nonlinealom @ point of instability, and is relatively poorly under-
systems such as state selection and the effect of dissipati&c0d. One of the major difficulties is this: whereas in the
on the state selection process itself. case of nucleation _the_decay is from a me_tastgble state in-

The mesoscopic nature of the system, i.e., the superco¥2lVing thermal activation and a saddle point, in the latter
ducting ring having a finite circumference with a finite num- case the external force drives the system to a point of insta-
ber of accessible states, is fundamental to this problem. FirsRility where there is no energy barrier left, i.e., the energy
it leads to the existence of a finite number of metastablé@ndscape looks locally flat. In this instance the decay and
current-carrying states which can compete for occupation. [the final state depend on various factors, such as how fast the
is this competition that lies at the heart of the problem. SecSystem was driven, the relative strength of fluctuations, in-
ond, care must be taken to distinguish between voltagelernal excitations, and so on. This makes a precise theoretical
driven and current-driven systems. As shown by Taetial. ~ formulation of the problem difficult, since it is not possible
[7], for systems that are not in the thermodynamic limit, i.e.,t0 use the free energy formulation as in the case of metasta-
mesoscopic systems, the choice of ensemble is not free. pility [18].
this paper we focus on voltage-driven systems as opposed to
current-driven systems. Il. THE SYSTEM

In addition to providing a prototype system to study vari-
ous aspects involving driven systems, in general, nonequilib- The physical system considered is a quasi-one-
rium superconductivity is of great interest in its own right. dimensional superconducting ring of finite circumference,
Indeed, the current-induced transitions in superconducting€e., the radius of the cross-section a®af the supercon-
filaments have been a subject of intense experimental anducting filament is much smaller than the coherence letigth
theoretical study for almost three decades. Referf8lgero-  and magnetic penetration lengit JS<¢(T) and /S
vides a comprehensive review of the field. <\(T), respectively, see Fig.(4. When the ring is placed

We concentrate on the emergence of the dissipative phasat a time-dependent magnetic field, by Faraday’s law of in-
slip state[9-13 in voltage-driven mesoscopic systems. duction, an electromotive foro@mf) is induced in the ring.
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dd(t) ..
_T: éEd', (2)

where £ is the induced emf andb(t) is magnetic flux
through the loop. The magnetic flux and the magnetic field
are related by

5
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, ) o Whereél is the area of the loop. Equatio(® and(3) can be
FIG. 1. (a) lllustration of a voltage-driven superconducting ring. ~ombined to obtain a relationship between the the vector
The magnetic flux is due to an infinitely long solenoid passingp,iantial and the electric field, i.e.,H, is used to denote the
through the center of the loogb) lllustration of the current- tangential component of the ,field, 'E(h@nx=—E ct. where
carrying states as uniformly twisted plane waves. At a phase slip ' x=

the amplitude of the helix approaches locally zero. The line througr{D‘X is the tangential component of the vector potential. This

the center of the helix represents the superconducting wire. In‘turn glvesAX= _‘?CUL’ whereL is the length of the wire.
The one-dimensional nature of the problem allows several

. P s _ simplifications. First, since the wire is narrow the magnetic
From London’s equatioE(r) = [ (4m\*/c%)Js(r,t)]) this  field generated by the supercurrent does not significantly in-
leads to a current that increases in tirttéere E is the elec-  fluence the order parameter. This allows one to treat the vec-

tric field, Js the supercurrent density, andthe speed of tor potentialA, as a parameter instead of as a dynamical
light.) The time-dependent increase in the current cannoYariable. In addition, since the magnetic field energy due to
continue indefinitely, and eventually the current will reach athe supercurrent is much smaller than the energy associated
critical value, at which point the system becomes unstabldVith the order parameter, the magnetic field term can be
and a dissipative phase slip will occur, resulting in a reducdropped from the free enerdi5]. Finally, since the radius
tion of the currenf13] by a discrete amount. of the wire is less thag the order parameter is only a func-

It is important to reemphasize that the system dynamics ifion of the tangential directiorx). The geometry of the wire
the case under study here, viz., the decay of the system froifplies periodic boundary conditions, i.&,(x) =W (x+L).
a point ofinstability, is very different from the historically For further analysis and computational efficiency it is
well-studied problem of the decay of the system from a poin€onvenient to rewrite the equation in a dimensionless form
of metastability The picture of the system hopping from one using the following transformations:
local minimum to the next no longer applies. Rather, the

picture now is one where the system is initially in a locally v'=(bl|a)"?¥,
stable state, but as a consequence of the voltage source, the .

energy landscape evolves in such a way that as the critical X' =xl¢,
current is reached, the system finds itself at the top of a hill. .

When this situation is encountered, it is possible that there A’'=2e¢Alhc,

exist a variety of different valleys for the system to flow into, ,
each valley leading to a locally stable state. In this picture, Vec=Vec2€TaL/H, 4
each of these locally stable states compete for occupation.
To examine this phenomena the Ginzburg-Landair)
theory of dirty superconductors will be considered. The
Ginzburg-Landau free energy functional can be written as

where&?=#2/(2me|al) and it is implicitly assumed that the
temperature is below the superconducting transitian, a
<0). 7. is the Ginzburg-Landau time defined as

ah

2 b TGL™qL /T _ TV
+a|\lf|2+§|\lf|4 8kp(Tc—T)
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me

f[w,A]=J di[z

(#1524
V—i hcA v
and it is the natural measure for time, iest/7g. . In the
+(8W)—1f di(ﬁx,&)Z, ) following, we will work in dimensionless units, i.e., we per-
form the transformations as defined above and drop out the
primes for convenience.
where A is the vector potential¥ is the complex valued The last transformation in E@4) involvesv,., the elec-
order parameteg is the electron charge, is the electron trochemical potential generated by the normal current, which
mass,c is the speed of lights is Planck’s constant, ana  will be formally introduced in the following section, where
and b are the expansion coefficients. Since the current ishe GL theory is extended to include nornf@hmic) current
induced in the loop by a time varying magnetic flux, the generation. In addition, following the scalings in E¢), it
effect of the induced emf must be included in the GL de-is natural to measure the length in units of the coherence
scription. By Faraday’s law of induction, the electrons in thelength ad =L/¢. Then the rescaled boundary condition reads
loop are subjected to an emf ¥ (x)=w(x+1), and the dimensionless free energy becomes
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12 _ ) , 1, goal, the equation of motiofi.e., Eq.(11)] must be general-
7"=f dxi [(ax— 1AW |?=[P|*+ §|‘I’| . (6) ized to include the creation of electrochemical potential gra-
“le dients at phase-slip locations.
To describe the dynamics of the superconducting conden- A Phase slip occurs when the system locally loses super-

sate, relaxational dynamics are assumed, leading to the stafenductivity and becomes a normal Ohmic conductor. As
dard stochastic time-dependent Ginzburg-Lan@@GDGL) discussed above, beloty, the system retains the fully super-

equation of motion, i.e., conducting _state after maki_ng a transition to a state of onver
current. An important question is the effect of the generation
END SF of normal current on the dynamics and the state selection
e o + 7, (7) problem.
To account for the generation of normal current, the time

. . . . derivative in the STDGL equation of motion must be re-

where »= 7(x,t) is an uncorrelated Gaussian noise source . - )
with correlations placed byd/dt+ivec, Whereve=vedX,t) is the electro-
chemical potential generated by the normal curféit 20—

(m(x,1))=0, 23]. With that substitution, the dimensionless equation of

motion becomes
(n* (X, 1) p(x",t"))=2D S(x—x")8(t—t").

J . 5 L wX
The angular brackets denote an average, [@insl the inten- (EJF'UEC)\P:&XWJFW_\P'\PFM I_\IHL 7. (12
sity of the noise determined by the fluctuation-dissipation
[17] theorem as Physically, the appearance of the electrochemical poten-
tial is due to local charge imbalance in a superconductor.
2m7kgT Gorkov [24] was the first to point out that in a supercon-
= SHeg (8 ductor, the Fermi level, and thus the electrochemical poten-
< tial, is a local time-dependent variable related to the coher-
where H, is the critical field, andH2x(1—t)?, &T)(1  €NCe of the superconducting state. Qualitatively, if the local
—1)~12 andt=T/T, [28]. ¢ chargg balance is disturbed, the Fermi I.evel experiences a
To m,ake the moael numerically more tractable, it is COn_local time-dependent perturbation. This in turn affects the

venient to make the transformatidi7,19 W — Weid(®x local energy gap. Gorkov showed that gauge inyariance is
where ' ' preserved, if the order parameter depends on time as exp

(—2iugt/h), whereur is the Fermi energy. This leads to the
q(t)=A,=wl "1, (9)  second term on the left-hand side in Efj2).

The electrochemical potential can be determined by com-
where w= 75, 2e&/%. This transformation twists, or winds, bining charge conservation and Ohm’s law in the following
the order parameter along the wire. The effect of the transmanner. Charge conservation implies thg{J,+Js)=0,
formation is to map the current-carrying states to twistedvhere J,, is the normal current ands is the supercurrent
plane waves as illustrated in Fig(hl. After the transforma- [25]. From Ohm’s law, i.e.g,ve.= — aJ,, this can be writ-

tion, the periodic boundary condition becomes ten as
W (I +x,t)=W(x,t)e W, (10 Pvee  3dg 13
—a—,
and the equation of motion obtained from Ed) reads as x> 24
oV g2 where « is a dimensionless Ohmic resistivity and can be
— =—— VU —V|V|2+il loxV+ 7. (11)  written as
ot axz
a=pnlp,, (14)

This formulation neglects the electrochemical potential due
to normal current generation at a phase-slip center. Its incluaherep,, is the normal state resistivity,
sion is discussed next.

kgT(1-t)A

A. Electrochemical potential Po= 7T§(T)262HC(T)2’ (15
Equation(11) would be a sufficient description if the gen- . . ) .

eration of a normal current at a phase slip could be neglected= T/ Tc, @ndH(T) is the critical field. For a dirty supercon-

This approximation is valid when the normal state resistivityductor[28] this can be written as

is negligible[13,17). However, the Ginzburg-Landau free en-

ergy is only valid for “dirty” superconductors in which the po=0.145 hpokeTe (16)

normal state resistivity is appreciable even at low tempera- © §O|F92H§(o)

tures. One aim of the current study is to examine the effect of

the resistive normal current to the process. To facilitate thisvherel is the mean free path length.
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Ill. LINEAR STABILITY ANALYSIS 0.05

The aim of the linear stability analysis is to gain insight 0.025
into the stability of the current-carrying state against small
perturbations, how the perturbations grow or decay in time,*&: 0
and how different modes are selected. In general, when the
total current exceeds the critical supercurrent, an Eckhau: -0.025
instability occurs. The Eckhaus instability is a longitudinal
secondary instability that appears in many systems exhibitinc =332
spatially periodic pattern26,27).

To study the Eckhaus instability in superconducting rings
the order parameter is linearized around a current-carrying .
state by setting ¥(x,t)=W¥,+5¥(x,t), where ¥,
=\1-g?%'™ and q=(w/1)t. ¥, is a current-carryingor -0.025
uniformly twisted plane wavestate that is a solution of Eq.

(12) in the limit w/1<(1—q?)?%/q.~0.77, whereq,=1/\/3. -0.05

This limit is satisfied for the range @#/I’s considered in this

paper(i.e., 210 9<w/I<2x 10 3%). Since the system pos-

sesses translational invariance and admits plane wave solu- FIG. 2. The eigenvalues as a functiqft) = wt/l for different

tions, the perturbation is given in terms of its Fourier expan-’s. The solid line is then=1 mode, dotted line=2 mode, and

sion, i.e., dashed linen=3 mode. For smalfj all the modes are stable, i.e.,
N\ <0, independent of the value af. Increasing the dissipatio
increases the growth rate of all phase-slip modes. The ins@) in

0.025

N(X’t)ZEn: [, (Ve +ay (he e, shows the boxed area.

where a_(t) is the amplitude of mode associated with Ny 212+ 6k?n , (K2+2)(4—K2)
wave vectork,=2mn/l. Substituting into Eq.12), using aq = 4+ 5K2 3kt _4+5k2 @
Egs. (9) and (13) to solve forv.., and linearizing in6¥ n n n
gives an equation of motion fa¥W or in Fourier space for
ay . Se'[tingakn(t)=akne“(“"“)t leads to an eigenvalue equa- +0(a?)+--- |, (19
tion which can be solved to give

A (Qua)=—(1-0))(1+a/2)— K2+ [(1- g2 (1—«a or for simplicity in the smallk,, limit,

+a?14) + 49%{K;+ a(1—g?) }] Y2 17) an;
+ . . . . _ 2

When \, is negative the corresponding mode is stable, aq =3 (3ki+2a+-- ). (20)

fluctuations decay back to zero, and the superconducting n

state persists. Whei, is positive, the current-carrying
states are unstable with respect to fluctuations of a finit
wave vectork,. For the following discussion), can be
neglected as it is negative definite.

In Fig. 2, A" is shown for the first three modes as a

é|' hus the rate of increase of the positive eigenvalue increases
with n. The situation is somewhat analogous to the classic
tortoise/hare race if only two modes are conside(sal n

=1 and 2). In this case the tortoise= 1) begins the race

function ofq for several different values af. For smallqg all g;\sims"?ce;;;t% TUt _Ifhef- htared aqceletrr?tesﬁ fatstefrd_smce
the modes are stable, i.e\,; <0. The inset in Fig. @) 1/90lq, A2 10q]q,. 10 TIrSt order ina, the efiect of dis-

shows that the modes become unstable sequentially; the loyiPation is to increase the rate of acceleration of both the

est mode first, then the mode=2, and so on. The timg, at  tortoise and hare equally. Since the tortoise begins the race

which a given mode becomes linearly unstable is determinefiSt this tends to favor the tortoise winning the race. In terms

by the conditionh (t,) =0, which gives of mode analysis, increasing the d|SS|pat|_bre., a) in-
creases the probability of a single phase shig=(L) occur-

I ring over a double phase slim€ 2).
th1=—\1/3+k/6. (18) The linear predictions can be used to estimate the relative

probabilities of a phase slip of ordeoccurring. In the linear

For a wire of infinite length this time corresponds to the timeprediction the equal time correlation function for théh

at which the current reaches the critical value, ig, mode is

= (W/ 1)ty = \1/3+k2/6— \1/3 andd .= q.(1— q2) = 2//27.

While Eq. (18) implies that single phase-slifi.e., n=1) (lan(t)|?)= 2_De20(t,a)ftdt/e—20(t',a) (21)

processes will dominate, this effect is offset by the rate of " I 0 '

increase of\ | , i.e., 9\, /dq is an increasing function a.

This can be seen in the smalldimit, i.e., where
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t 70 -
U(t,a)Ej dt'\, (t',a). (22
0 60
. . . . . 50
Following the instability, Eq(21) describes the evolution of
thenth mode from the initial current-carrying state described 40
by W, = \/1—q2exp0qx) to the new current-carrying state 30
described by W,=a.exdi(q—k,)x], where a, 20
= /1—(q—ky,)?. The quantity ‘0
a,={[a,(H)[*)/a, (23 0
describes the “distance” from the initial to the finaih state 70
and can be thought of as an orthogonal coordinate in an
n-dimensional space. The unit of measure in this space is 60
then 50
A 40
d= En‘, aZ. (24) 50
o . 20
If it is assumed that a phase slip has occurred wiherl,
then it is natural to interpret the relative probability of 10
order phase slip as 0
32 b) d)
n
Pn= ~ (25 FIG. 3. A snapshot of a phase-slip process with 64 andn,
2 aﬁ =5. (a) The current-carrying states are uniformly twisted plane
n

waves.(b) Due to fluctuations, the supercurrent at some location

E ion(2 id litati . f1h along the wire grows slightly faster than in the rest of the system.
quation(25) provides a qualitative picture of the state se- (c) At a phase slip the system makes a transition back to below the

lection process and makes it possible to compare the linégfigca) current by reducing the number of loops in the heit.
theory to numerical results. This will be done in Sec.(IN' agter the phase slip, the system retains the perfectly superconduct-
particular, see Fig.)9 ing state withJ<J, everywherez axis, lengthx-y plane, RE¥ ]

In addition to the dependence &, on\., P, also and IM¥].

depends on the noise strength. While this is not directly vis-

ible from Eq. (25) it should be noted that the equatieh  such asT,=3 K, T=0.93T,, H,=300 G, and&(0)=+/S

=1 imposes D dependence Oén and P,. =1000 A. With these values the intensity of the noise is
Physically, the noise strength depends on the temperatu@=10"2, the GL time is 75 =1.4x10" and o

of the system via the fluctuation-dissipation theorem. The~&/23 V. In the simulations the temperature is fixed and

intensity of thermal noise increases @s-T, as demon- thus the intensity of noise is fixed» was varied between

strated by Eq(8). Thus, close tdT, the relative importance 0.0001 and 0.1. This corresponds to electromotive forces

of the noise becomes increasingly important, whereas awalyom 2 nV to 2 V. For dirty superconductors the normal

for T, the driving force is dominant. Since has no time State resistivity can vary between 0.01 and k0 cm and

dependence, the expansion ﬁgdtl)\:(tl,a) leads to the Po varies from 1.0 to 100.0u) cm. Using these values the

same result as obtained by Tarlie and Elded], i.e., in terms ~ dimensionless resistivityy~ 10" *~1.0, depending on the di-

of the intrinsic and extrinsic parameters, the instability ofmensions and the material. o

ordern becomes active at timenzl(&q)\:wl)*l’z. . A simple Euler algorithm was used for the t|me integra-
To summarize, the linear analysis shows that the station of Eq.(12), and Eq.(13) was solved in Fourier space.

selection has a subtle dependence on both the applied driving’® complex order parameter was separated into its real and

force and on the intrinsic properties of the system. It is im-maginary parts. The simulation parameters weke

portant to note that this analysis can only be expected to give 64, dx=0.85, dt=0.2, wheredx anddt are the small-

a qualitative description of the process since the analysi§St discrete elements of space and time, respectively.

does not account for competition between the various modes. A useful parametrization of the length of the system is

These results will be compared with numerical simulationgi=0¢/27, whereq.=1/{3 from the Eckhaus analysis of

of the stochastic time-dependent GL equation in Sec. IV. the GL equation as discussed abomgis interpreted as the
winding number of the order parameter when the Eckhaus

instability is encountered. For the simulations to follaw,

=5 (see Fig. 3 This allows enough complexity due to in-
The parameters that enter the numerical simulations cateraction between different modes, i.e., five modes can com-

be estimated by considering typical experimental valuespete for occupation, while remaining numerically tractable.

IV. NUMERICAL RESULTS
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FIG. 4. Order parameter just before and after the phase slip. As 900000 950000 1000000 1050000 1100000

|| —0, the phase gradient must grow in order to maintain a con- time

stant current. As the amplitude goes to zero, it can “slip” by &  F|G. 5. Supercurrent and winding number as a function of time.
multiple of 27 and relax to a state of lower current. When this figure is compared to the state selection probabilities in

h . h babili f amth-ord h i Fig. 6, it can be seen that the probabilities of double and triple
When computmg the pro _a llity of amth-order p as_e shp, phase slips are almost equal, but there is still a small probability for
P, , the averaging was typically from 2000 phase-slip events_;ing|e slips.

(small w) up to 15000 phase slipdarge w). Simulations
performed at large values af andw (not shown hergoften

lead to unusual results, which may be due to numerical in- W(t)= ijldxw_ (27)
accuracies. 2 )0 X
A. Dynamics of the order parameter As described above, the order parameter can change its
The dynamics of the order parameter around a phase sliyinding number by Zn, where n=*+1,+2,.... Only

is illustrated in Figs. 3 and 4. Figure 3 illustrates that achanges by an integral multiple ofr2are possible in order
current-carrying state is a uniformly twisted plane wave. Asto preserve the continuity of the order parameter. This also
the current increases, the helix becomes more tightly woundmplies that at a singlémultiple) phase slip, the system re-
Due to fluctuations, there will be weak spots where the locamoves exactly onéintegral multiplg fluxoid.
supercurrent reaches the critical current before the rest of the Figure 5 displays the time development of the supercur-
system. This is the point where the amplitude of the ordefent and winding number defined in Eq26) and (27), re-
parameter starts to decay rapidly toward zero. Whiff ~ spectively. The electric field drives the current to the critical
—0, the phase-slip center momentarily disconnects thé&urrent, where an instability occurs and the current jumps to
phases to the left and right of it, the helix looses a loop, and lower value. As suggested by Fig. 5, there can be several
the supercurrent jumps to a lower value. This cycle is remodes simultaneously present. In the figure, phase slips of
peated periodically. order two dominate but occasionally there are jumps of order
In Figs. 3 and 4 the behavior described using linear analythree. The relative occurrence of phase slips of all orders is
sis in the preceding section is clearly visible: as the supershown in Fig. 6 as a function of driving fordee., ») for
current increases, the absolute value of the order paramet&gveral values oé.
|W|?, decreases and, at the moment of the phase slip, ap- AS discussed in connection with the linear stability analy-
proaches zero. After the phase slip the order parameter ragis the appearance of phase slips of different orders is a
idly recovers. Figure 4 demonstrates this behavior. This alsubtle issue. For example, every now and then the winding
lows the amplitude to relax toward equilibrium in the number displays little dips, as if the total phase slip was a
vicinity of the phase-slip centdtimest, andts in Figs. 4 result of a two-stage process. It is instructive to look at the
and 3c) and 3d), respectively. After a short time the wire state selection probabilities in Fig. 6 together with the dy-
obtains a uniform currentt{ in Fig. 4). namics of the supercurrent and the winding number in Fig. 5.
To quantify the phase-slip events it is useful to consideAs seen from Fig. 6 phase slips of order1 dominate the
two quantities: the spatially averaged supercurrent and therocess at low driving forces. As the driving force is in-

winding number, both at timé The spatially averaged su- creased phase slips of orde+2 become dominant and the
percurrent is given by shape of the probability curve becomes skewed. Order by

order, other modes become dominant in a similar manner.
1! This is consistent with the linear stability analysis as shown
21 Jo in Fig. 2.
The little dips referred to above are a result of competition
The winding number is a measure of the total phase chandgeetween the modes. As seen in the linear stability analysis,
in the system and can be defined as modes of lower order become unstable first but the higher-
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FIG. 7. Top: The winding number as a function of time. Bottom:
The square of the amplitude of the order parameter taken at four
different times inside the boxed area. As the winding numbers in-

FIG. 6. State selection probabilities from numerical simulations .
P creases, there are spots where the amplitude starts to diegay (

as a function of the driving force. The closed circles denote singlel_ : .. )
. . ) S his leads to competition and coexistence of several modes, and
phase slips, open circles, double; closed squares, triple; open

) . : . Several possible phase-slip centers. The parameters correspond to
squares, quadruple; and closed triangles, phase slips of order flveihe case when three modes=1,2,3, are present

log,, (@)

order ones grow at a faster rate. This leads to competitio
and crossover effects. This implies that the dips in Fig. 5 ar
not due to a result of a two-stage process, where a phase s

of higher order occurs via two lower-order processes, bu rediction[i.e., Eqs(21)—(25)] is also included for compari-

instead due to theoexistence different modes with differ- oo ‘\yije the linear analysis fails to predict the correct am-

ent growth rates. Figure 7 illustrates the complicated natur(f)litudes for different modes, it provides the correct qualita-

of the phase §I|p when sgyeral modes are S|multaneous¥ e picture and predicts the order in which different modes
present. There is a competition between different modes, ar}g}/

. . . ecome dominant. The quantitative discrepancies stem from
it is even possible for several phase-slip centers to éalst

mos) simultaneously.
Figure 8 shows the time rate of change|#|? and the

Values ofw. To highlight this feature the selection probabili-
Iies were numerically estimated as a function offor w
1073 and are displayed in Fig. 9. In this figure the linear

0.6 T T

electrochemical potential at the phase-slip center as a func 0.4 °‘=0°0_13

tion of time, when the mode=1 is dominant. The time = D=10 |

frame is selected in such a way that the figures cover thex 0.2 ©=0.00032 4
=

immediate vicinity of the phase slip. At the moment of the
phase slip|W|?=0. After the phase slip}' rapidly recovers 0.0
its equilibrium value. Since there is a constant emf acting on

the superconductof V| starts to decrease after its recovery.

As seen in the lower figure,e. regains its equilibrium value _5x10°°

(vec=0) at the phase-slip center considerably slower than 3

V. This can be seen in the following way. The electrochemi- % 0.0

cal potential is zero if the current is uniform throughout the =

sample. However, as seen in Figs. 4 and 7, the time requirer ~ -5x10°

to reach a uniform current is much longer than the time re- e - .

quired for healing of the order parameter at the phase-slit 178530 178540 178550 178560
center. Physically, this corresponds to relaxation of the time

charge imbalancg28] in a superconductor. The relaxation is i, g, Top: The time derivative df¥|? at the location of the
dlﬁusi\ée [8,10,29, with time scales typically of order 18 pnase slip as a function of time. Bottom: The rate of change of the
-10~ s. electrochemical potential at the phase-slip center as a function of

As discussed in the preceding section the electrochemic@me. The simulation parameters correspond to a case when single
potential, or dissipation, changes the probability of makingslips dominate almost completely. The slice runs from immediately
an nth order phase slip. This can be seen in Fig. 6 for allbefore the phase slip to just after it.
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FIG. 10. Top: Energyin arbitrary unit$ dissipated as a function
FIG. 9. State selection probabilities as a function of the dissipayf time. Bottom: The corresponding powén arbitrary unit$ dis-
tion (i.e., a) for ©=10"3. sipated at phase slips. The figures show clearly the quantized nature
of dissipation. The crossover effects are visible in the width of
two factors, first the nonlinear terms seem to favor a separgeaks. The simulation parameters wed&=0.85, dt=0.2, «
tion between the modes. Figure 6 shows that once a mode0.01, ©=0.0064, and>=10"3. These parameters correspond to
becomes dominant, it quickly suppresses all the other ones.case when three modes=1,2,3) are active at the same time.
However, in linear theory all the allowable modes have much
higher amplitudes at all values of the driving foree[30].  where 50=(2H§/I)a and jn is the dimensionless normal
Second, at the limiw— 0 the linear theory predicts accu- current density.
rately the crossover points where a new mode becomes The increase in temperature due to a phase slip can be
dominant[30], but the presence of dissipatidinite «) has  estimated using the heat capacity. The heat capacity per unit
a significant effect on it as can be seen in Figs. 6 and 9. mass is

B. Power dissipated at a phase slip c= i A_E
I S . m AT’

A phase slip is a dissipative process where electrical en-
ergy is locally converted into heat. This is due to Ohmicwherec is the specific heat. The change in temperature is
resistance at the phase-slip center. Early experinf@dt29  then
showed that the differential resistance related to the phase
slip is temperature independent for a wide range of tempera- AT— T,
tures except very close .. This is a delicate issue; heating T_TOJO J’ Jndx
due to Ohmic resistance changes the local critical current,
and issues related to charge imbalance and relaxation mayhere

become importani8]. In the following, the heat generated at

dr’, (30

a phase slip is estimated. The normal carriers are assumed to 2H§
follow Ohm's law. Tozm“'
The Joule heating law can be used to estimate the heat
generated at a phase slip. The power generated is pm is the mass density, anblgoc(l—t)z, wheret=T/T,
[28]. Equation(30) can be used to estimate the change in
p— f fn' EdQ=Sf i E,dx, (28) temperatlzjre due to a phase slip. The linear dependentg of
volume on (1—1t)“ expresses the well-known fat0,29 that close

to T, the effects of Joule heating are less significant. Evalu-
whered() is a volume elemenSis the cross-sectional area ation of AT requires information about the time and the

of the ring, ] , is the dimensional normal current density, and'/e€ngth scales involving., and therefore we have not esti-
E, is the electric field along the wire. In terms of the elec-Mmated it here. Figure 10 shows the accumulated energy and

trochemical potential, the energy per unit volume can then b@oWer dissipated as a function of time.
written as

V. CONCLUSION
E T
_—— 2
c 50J0U0|Jn| dx

dr’, (29) Here, the dynamics of accelerated quasi-one-dimensional
superconductors under the influence of a voltage source was
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studied. A constant emf was used to accelerate the supercuively similar, nonlinearities and interaction between the
rent to the critical current, at which point the Eckhaus instaphase slips at higher driving forces and higher normal cur-
bility is encountered and multiple metastable states can conmrent resistivity lead to differences.
pete for occupation. Each of these competing metastable In spite of the simplicity of the system, it displays rich
states corresponds to a state with a different supercurrerind complex phenomena, and more analytical and numerical
The transition to a new state of lower current involves genstydies are needed. To the authors’ knowledge, there exists
eration of a resistive phase-slip center that heals after thgy systematic method to study state selection in accelerated
phase slip. Because the system was driven by a voltaggstems. Recent wofl8,30,, suggests that the path integral
source, it allowed the study of a very general phenomenomethod of Onsager and Machl{®1] may offer a framework
namely, the relation to the general methods and problems ifyr a systematic study of the decay of systems from points of
nonlinear dynamics, statistical mechanics, and pattern formanstability when multiple modes compete for occupation. The
tion. extension of this work to problems where the dynamical sys-
Linear stability analysis was used to investigate the Ecktem is evolving in time, as is the case here, has not been

haus instability. It was found out that within the linear ap- explored. Additionally, future work could explore the two-
pr0X|mat|On, the state selection process Is a Competltlon ()(ﬁimensiona] case numerica”y_

two factors: the characteristic time at which a magt)

becomes unstable, and the growth rates of the other modes.
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